Chapter 13

Maxwell’s Equations and Boundary Conditions

13.1 INTRODUCTION

The behavior of the electric field intensity E and the electric flux density D across the interface
of two different materials was examined in Chapter 7, where the fields were static. A similar
treatment will now be given for the magnetic field strength H and the magnetic flux density B, again
with static fields. This will complete the study of the boundary conditions on the four principal
vector fields.

In Chapter 12, where time-variable fields were treated, displacement current density J, was
introduced and Faraday’s law was examined. In this chapter these same equations and others
developed earlier are grouped together to form the set known as Maxwell’s equations. These
equations underlie all of electromagnetic field theory; they should be memorized.

13.2 BOUNDARY RELATIONS FOR MAGNETIC FIELDS

When H and B are examined at the interface between two different materials, abrupt changes
can be expected, similar to those noted in E and D at the interface between two different dielectrics
(see Section 7.7).

In Fig. 13-1 an interface is shown separating material I, with properties o, and y,, , from 2, with
o, and p,. The behavior of B can be determined by use of a small right circular cylinder
positioned across the interface as shown. Since magnetic flux lines are continuous,

§B-ds= B,-dS,+I B-dS+ B,-dS;=0
cyl

end | cnd 2

Now if the two planes are allowed to approach one another, keeping the interface between them, the
area of the curved surface will approach zero, giving

B,‘dS,+f B,-dS,=0

end 1 end 2
or —B,, ds, + B,» s, =0
cnd 1 end 2
from which
Bnl = Bn2

Fig. 131
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In words, the normal component of B is continuous across an interface. Note that either normal to
the interface may be used in calculating B,,, and B, .

The variation in H across an interface is obtained by the application of Ampere’s law around a
closed rectangular path, as shown in Fig. 13-2. Assuming no current at the interface, and letting
the rectangle shrink to zero in the usual way,

0= § H-dl— H(lAll - HQA(Z

whence H,=H,

Thus tangential H has the same projection along the two sides of the rectangle. Since the rectangle
can be rotated 90° and the argument repeated, it follows that

H,=H,

In words, the tangential component of H is continuous across a current-free interface.
The relation
tan 6, pu,
tan 6, pu,

between the angles made by H, and H, with a current-free interface (see Fig. 13-2) is obtained by
analogy with Example 6, Section 7.7.

13.3 CURRENT SHEET AT THE BOUNDARY

If one material at the interface has a nonzero conductivity, a current may be present. This
could be a current throughout the material; however, of more interest is the case of a current sheet
at the interface.

Figure 13-3 shows a uniform current sheet. In the indicated coordinate system the current sheet
has density K= K,a, and it is located at the interface x =0 between regions I and 2. The
magnetic field H' produced by this current sheet is given by Example 2, Section 9.2,

H =3KXa,, = 1K, H; = 1K X a,, =1K((-a,)

Thus H’ has a tangential discontinuity of magnitude |K,| at the interface. If a second magnetic
field, H", arising from some other source, is present, its tangential component will be continuous at
the interface. The resultant magnetic field,

H=H+H"
will then have a discontinuity of magnitude |K,| in its tangential component. This is expressed by

the vector formula
(H,-H;) Xa,,=K
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Fig. 13-

where a,,, is the unit normal from region 1 to region 2. The vector relation, which is independent
of the choice of coordinate system, also holds for a nonuniform current sheet, where K is the value
of the current density at the considered point of the interface.

13.4 SUMMARY OF BOUNDARY CONDITIONS

For reference purposes, the relationships for E and D across the interface of two dielectrics are
shown below along with the relationships for H and B.

Magnetic Fields Electric Fields
B..= { D, =D,; (charge-free)
mem (D,—-D;)a,;,=—p, (with surface charge)
{ H, = H, (current-free) E -
(H,-H;)Xa,,,=K (with current sheet) n— e
tanel_“ﬂ tanal_e,oz
tan 6, m, (current-free) tan 0, <, (charge-free)

These relationships were obtained assuming static conditions. However, in Chapter 14 they will
be found to apply equally well to time-variable fields.

13.5 MAXWELL’S EQUATIONS

A static E field can exist in the absence of a magnetic field H; a capacitor with a static charge Q
furnishes an example. Likewise, a conductor with a constant current / has a magnetic field H
without an E field. When fields are time-variable, however, H cannot exist without an E field nor
can E exist without a corresponding H field. While much valuable information can be derived from
static field theory, only with time-variable fields can the full value of electromagnetic field theory be
demonstrated. The experiments of Faraday and Hertz and the theoretical analyses of Maxwell all
involved time-variable fields.

The equations grouped below, called Maxwell’s equations, were separately developed and
examined in earlier chapters. In Table 13-1, the most general form is presented, where charges and
conduction current may be present in the region. Note that the point and integral forms of the first
two equations are equivalent under Stokes’ theorem, while the point and integral forms of the last
two equations are equivalent under the divergence theorem.
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Table 13-1. Maxwell’s Equations, General Set

Point Form Integral Form
aD
VXH=J, +-5‘- fﬂ «dl= I( ) ds (Ampere’s law)
VXE= _o8 §E°dl=1(—@)-d8 (Faraday’s law; S fixed)
at s ot
V-D=p §D-dS=J'pdv (Gauss’ law)
S v
V-B=0 § B-dS=0 (nonexistence of monopole)
S

For free space, where there are no charges (p=0) and no conduction currents (J.=0),
Maxwell’s equations take the form shown in Table 13-2.

Table 13-2. Maxwell’s Equations, Free-Space
Set

Point Form Integral Form

qu—%) §H-d|=](@)-ds

VXE= -% §E dl—f(——g)

V-D=0 §D~d8=0
S

V-B=0 §B-d8=0
s

The first and second point-form equations in the free-space set can be used to show that
time-variable E and H fields cannot exist independently. For example, if E is a function of time,
then D=¢E will also be a function of time, so that dD/3dt will be nonzero. Conse-
quently, VXH is nonzero, and so a nonzero H must exist. In a similar way, the second
equation can be used to show that if H is a function of time, then there must be an E field present.

The point form of Maxwell’s equations is used most frequently in the problems. However, the
integral form is important in that it better displays the underlying physical laws.

Solved Problems

13.1. Inregion 1 of Fig. 13-4, B,=1.2a,+0.8a,+0.4a, (T). Find H, (i.e., Hat z= +0) and
the angles between the field vectors and a tangent to the interface

Write H, directly below B, . Then write those components of H, and B, which follow directly from
the two rules B normal is continuous and H tangential is continuous across a current-free interface.
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B,=12s, + 08a,+04 a (T)

H,= “i (8.0a, + 5.332,+2.67 a,)107> (A/m)
0

H, - pl (8.0a, + 5.33a, + 10°4oH,,0,)10  (A/m)
0

B,= B,a + B,a +04 a, (T)
Now the remaining terms follow directly:
B,, 04

B,z = #o.uﬂH,z =8.0X% 10~2 (T) ByZ =5.33x 10_2 (T) sz = Hothra =; (Alm)

Angle 8, is 90°— a;, , where qa; is the angle between B, and the normal, a, .
BI * .:
1By

whence a,=74.5° and 6,=15.5°. Similarly, 8,=76.5°
Check: (tan 6,)/(tan 8,) = u,»/y,.

=0.27

Cos a; =

13.2. Region 1, for which pu,, =3, isdefined by x<O0 andregion2, x>0, has u,=35.
Given

H,=4.0a, +3.0a, —6.0a, (A/m)

show that 6,=19.7° and that H,=7.12A/m.
Proceed as in Problem 13.1.

H,= 4.0a + 3.0a,— 6.0a, (A/m)

B, = uy(12.0a, + 9.0a,—18.0a,) (T)

B, = uo(12.0a, + 15.0a, — 30.0a,) (T)

H,= 2.40a,+ 3.0a,— 6.0a, (A/m)
Now H,=V(2.40) + (3.0’ + (—6.0)* = 7.12 A/m
The angle a, between H, and the normal is given by

H,
cos af2=}~;3=0.34 or a;=70.3°
2

Then 6,=90°—a,=19.7°.

13.3. Region 1, where pu,, =4, is the side of the plane y +2z=1 containing the origin (see
gti Fig. 13-5). Inregion 2, u,=6. B;=2.0a,+1.0a, (T), find B, and H,.
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13'4.

13.5.

MAXWELL'S EQUATIONS AND BOUNDARY EQUATIONS

Choosing the unit normal a, = (a, +8,)/V2,
(208, +1.08,)- (3, +9.)_ 1

V2 V2

1
B, = (—_)l,. =0.5a, +0.52, =B,
"\va2 " ?

Bll = B] - Bhl = 2.0‘. + O-S.y - 0.5.!

Bnl =

1
H,= . (0.5a, +0.125a, — 0.125a,) = H,,
0

B,, = pop,-H,; = 3.0a, + 0.75a, — 0.75a,
Now the normal and tangential parts of B, are combined.
B,=3.0a, +1.25a, —0.25a, (T)

1
H,= "— (0.50a, +0.21a, — 0.042,) (A/m)
0

In region 1, defined by z<0, u,,=3 and
1
H, =;o(0.28, +0.5a, + 1.0a,) (A/m)

Find H, if it is known that 8, =45

“|'.g
= =(.88 =28.3°
COoS @, H,| or a,
Then, 6,=61.7° and
tan61.7° u,
a5 - 3 or M,2=5.57

From the continuity of normal B, u, H,,=p,H,,, andso

H,=1 (o.z., +0.50, + £ 1.0.,) =2 (0.2a, +0.58, +0.542,) (A/m)
Ho U Ho

[CHAP. 13

A current sheet, K=6.5a, A/m, at x=0 separates region I, x<0, where H,=

10a, A/m and region 2, x>0. FindH,at x= +0.

Nothing is said about the permeabilities of the two regions; however, since H, is entirely tangential,
a change in permeability would have no effect. Since B, =0, B,,=0 and therefore H,,=0.
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(H, - H,) Xa,,=K
(10a, — H;8,) X2, = 6.5a,
(10— H,;)(—a,) =6.5a,
H,,=16.5 (A/m)

Thus, H,=16.5a, (A/m).

13.6. A current sheet, K=9.0a, A/m, is located at z=0, the interface between region
ot 1, z<0, with p,=4, and region 2, z>0, u,=3. Given that H,=14.5a, +
& 8.0n, (A/m), find H,.

The current sheet shown in Fig. 13-6 is first examined alone.

H; = }(9.0)a, X (—8,) = 4.5(-a,)
H; = (9.0)a, Xa, =4.58,

From region 1 to region 2, H, will increase by 9.0 A/m due to the current sheet.
Now the complete H and B fields are examined.

H,=14.5a, +8.0a, (A/m)
B, = uo(43.50, +24.02,) (T)

B, = 1o(22.0a, +24.08,) (T)
H,=5.5a, +6.0a, (A/m)

Note that H,, must be 9.0 A/m less than H,, because of the current sheet. B, is obtained as uu,H,, .
An alternate method is to apply (H,—H,)Xa,,,=K:

(Hga, + H,a, + H,a,)Xa,= K+ (14.5a, + 8.0a,) X a,
—-H,a, + H,a, = —5.5a,

from which H,,=55A/m and H,=0. This method deals exclusively with tangential H; any
normal component must be determined by the previous methods.

13.7. Region 1, z<0, has pu,,=1.5, whileregion2, z>0, has pu,=5. Near (0,0,0),
B, =2.40a, + 10.0a, (T) B, =25.75a, —17.7a, + 10.0a, (T)
If the interface carries a sheet current, what is its density at the origin?

Near the origin,

H, = -!‘—o#rl—l B, = ;‘1—0 (1.60a, +6.67a,) (A/m)

H, -=“i (5.15a, — 3.54a, + 2.0a,) (A/m)
0
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Then the local value of K is given by
1 50/a, +a
=(H, - =—(—3.55a, +3. 4,67a,) X8, =— =
K=(H,-H,)) Xa,, “o( 3.55a, +3.54a, + 4.67a,) Xa Mo(—\EJ) (A/m)
131.8. Given E=E,_ sin(wt— Bz)a, in free space, find D, Band H. SketchE and Hat ¢=0.
ﬁ D = €,E = €,E,, sin (ot — Bz)a,
The Maxwell equation VXE=-3B/dt gives
a, a, a,
8 9 o|__8
ox dy oz ot
0 E,sin(wt—fz) 0

or —%B=ﬂE.,, cos (wt — Bz)a,

Integrating,
B= —E‘%sin (wt — Bz)a,

where the *‘constant” of integration, which is a static field, has been neglected. Then,

_ _BE. .
H= ol sin (wt — fz)a,
Figure 13-7

Note that E and H are mutually perpendicular. At r=0, sin(wt?— Bz)= —sin Sz.
shows the two fields along the z axis, on the assumption that E,, and B are positive.

Fig. 13-7

13.9. Show that the E and H fields of Problem 13.8 constitute a wave traveling in the z
;¢ direction. Verify that the wave speed and E/H depend only on the properties of free space.

% E and H together vary as sin (w? — 8z). A given state of E and H is then characterized by

wt — Bz = const. = wt, or z=%’(t—lo)
But this is the equation of a plane moving with speed
®

c==
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in the direction of its normal, a,. (It is assumed that 8, as well as w, is positive; for § negative, the
direction of motion would be —a,.) Thus, the entire pattern of Fig. 13-7 moves down the z axis with

speed c.
The Maxwell equation VXH=3D/at gives

a, a =
d = = d

i L 2 =2 E s -

ox dy oz oy Colom SN (wt = pz)m,

_(ffo"' sin(wt—-pz) 0 O

p:—f:cos (ot — B2)a, = €oE,,w cos (wt — fz)a,

1 _ ?
2
€
Consequently, oo B
€oldo (107°/36x)(4x X 1077)
Moreover,
E _ wpo \/—ﬂ—o
H- B p 1205 (V/A) = 120n
13.10. Given H= H,¢/“"*Pg_ in free space, find E.
VXH= Q
ot
) oD
—_ (wr+B2)g . T
57 Hme M =
aD
: ax+fr), _ T
JjBH,." "=
D= —ﬂHm el(""*ﬂ‘).y
w
and E=D/e,.
13.11. Given

E = 307e/'*f9g,  (V/m) H=H, e+ (A/m)

in free space, find H,, and B (8 >0).

This is a plane wave, essentially the same as that in Problems 13.8 and 13.9 (except that, there, E
was in the y direction and H in the x direction). The results of Problem 13.9 hold for any such wave in

free space:
w 1 E Ho
== =3x10°(m/s —=\/—=120xQ
B Ve (m/s) H €
Thus, for the given wave,
10° 1 30n 1
ﬂ—;x—mg—g(radlm) Hm—tﬂ-::tz(A/m)

To fix the sign of H,,, apply VXE=—0B/or.
jB30me Py = —i10°u,H, e/ P,

which shows that H,, must be negative.
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13.12. In a homogeneous nonconducting region where u, =1, find €, and w if
i E = 307~ @Dy (V/m) H=1.0e“-“»lg  (A/m)
Here, by analogy to Problem 13.9,

w__1 _3x10° E-\ﬁ‘— \/E
_\/a_\/e_'“' (m/s) i 6—120.1! py (Q)

Thus, since u, =1,

o 3x10® 1
- = 307 =120r——
I Ve Ve,

which yield €, =16, © =10%rad/s. In this medium the speed of light is c/4.

Supplementary Problems

13.13. Region I, where pu,, =5, ison the side of the plane 6x +4y + 3z =12 that includes the origin. In
region 2, pu,=3. Given

1
H, = ‘—‘— (3.0a, —0.5a,)) (A/m)
0
find B, and 6, . Ans. 12.15a, +0.60a, + 1.58a, (T), 56.6°

13.14. The interface between two different regions is normal to one of the three cartesian axes. If
B, = uy(43.5a, + 24.0a,) B, = uy(22.0a, +24.0a,)
what is the ratio (tan 6,)/(tan 8,)? Ans. 0.506

13.15. Inside a right circular cylinder, p,,=1000. The exterior is free space. If B,=25a, (T) inside
the cylinder, determine B, just outside. Ans. 2.5a, (mT)

13.16. In spherical coordinates, region 1is r<a, region2is a<r<b andregion3is r>b. Regions 1
and 3 are free space, while ,,=500. Given B,=0.20a, (T), find H in each region.

0.20 4x10°* 0.20
, A/m), A
 (Am), — (Afm), =~ (A/m)

Ans.

13.17. A current sheet, K= (8.0/uy)a, (A/m), at x=0 separates region I, x<0 and p,=3, from
region 2, x>0 and p,=1 Given H,=(10.0/p,)(a, +2,)(A/m), find H,.

Ans. i—(l0.0a,-t»Z.Oa,) (A/m)
0

13.18. The x=0 plane contains a current sheet of density K which separates region I, x<0 and g, =
2, fromregion 2, x<0 and u,=7. Given

B, =6.0a, + 4.0a, + 10.0a, (T) B, = 6.0a, — 50.96a, + 8.96a, (T)

find K.  Ans. %(3.72:,-9.28.,) (A/m)

13.19. In free space, D= D, sin(w! + fz)a,. Using Maxwell’s equations, show that

B= —wpyeD,,
B

sin (wt + Bz)a,
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Sketch the fields at ¢=0 along the z axis, assuming that D, >0, B>0. Ans. See Fig. 13-8

13.20. In free space,

B = B, el

Show that
wB,, .
E=——T¢lwbrlg
B
13.21. In a homogenecous region where u,=1 and € =50,
E =20ne/ "%, (V/m) B = oM, e P, (T)
Find @ and H,, if the wavelength is 1.78m.  Ans. 1.5 x 10*rad/s, 1.18 A/m



